Complexity of the quantum adiabatic algorithm

Peter Young

e-mail: peter@physics.ucsc.edu

Work supported by the NSF and the Hierarchical Systems Research Foundation.

Collaborators: S. Knysh and V. N. Smelyanskii

Talk at meeting on “Quantum Critical Phenomena”,

Toronto September 25, 2008
Introduction

• What is the “Quantum Adiabiatic Algorithm”?
• Motivation for studying the complexity of the Quantum Adiabatic Algorithm for much larger sizes than has been studied before.
• The Monte Carlo method that will be used to do this.
• Results for the a particular problem (Exact Cover).
• Conclusions.
Problem Studied

What problems can be studied more efficiently on a quantum computer than a classical computer?
What problems can be studied more efficiently on quantum computer than a classical computer?

There are algorithms for some specific problems which are much more efficient than the fastest classical algorithm.
What problems can be studied more efficiently on quantum computer than a classical computer?

There are algorithms for some specific problems which are much more efficient than the fastest classical algorithm.

The best known is Shor’s factoring algorithm which factors an integer of n bits in a time which is polynomial in n, as opposed to the best classical algorithm which take a time of order $\exp(c n^{1/3})$.
Problem Studied: II

Here we are interested in a general class of important “optimization problems” called NP-Hard.

Minimize a function of \(N \) binary variables, \(b_i = 0, 1 \), with constraints.
Here we are interested in a general class of important “optimization problems” called NP-Hard.

Minimize a function of N binary variables, $b_i = 0, 1$, with constraints. Interested in how the computer time, the complexity, depends on N. All known classical algorithms have exponential complexity,

$$\text{complexity } \propto \exp(\text{const. } N).$$

for both “worst case” and “typical” instances.
Here we are interested in a general class of important “optimization problems” called **NP-Hard.**

Minimize a function of N binary variables, $b_i = 0, 1$, with constraints. Interested in how the computer time, the complexity, depends on N. All known classical algorithms have exponential complexity,

$$\text{complexity } \propto \exp(\text{const. } N).$$

for both “worst case” and “typical” instances.

Could a quantum computer solve typical instances of NP-Hard problems with just polynomial complexity, i.e.

$$\text{complexity } \propto N^\sigma,$$

for some value of σ?
The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001) as way of solving general optimization problems on a quantum computer.
Quantum Adiabatic Algorithm

The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001) as way of solving general optimization problems on a quantum computer.

Problem Hamiltonian \mathcal{H}_P is a function of the bits, or equivalently the spins

$$\sigma_i^z = 1 - 2b_i = \pm 1.$$

Add a “driver Hamiltonian”, which is simple and does not commute with \mathcal{H}_P. The simplest is a “transverse field” $\mathcal{H}_D = -\hbar \sum_i \sigma_i^x$.

The total Hamiltonian is

$$\mathcal{H} = [1 - \lambda(t)] \mathcal{H}_D + \lambda(t) \mathcal{H}_P,$$

where the “control parameter” $\lambda(t)$ varies from 0 at $t = 0$ to 1 at $t = T$, the running time, or complexity.
The Quantum Adiabatic Algorithm was proposed by Farhi et al. (2001) as way of solving general optimization problems on a quantum computer.

Problem Hamiltonian \mathcal{H}_P is a function of the bits, or equivalently the spins $\sigma_i^z = 1 - 2b_i = \pm 1$.

Add a “driver Hamiltonian”, which is simple and does not commute with \mathcal{H}_P. The simplest is a “transverse field” $\mathcal{H}_D = -h \sum_i \sigma_i^x$.

The total Hamiltonian is

$$\mathcal{H} = [1 - \lambda(t)] \mathcal{H}_D + \lambda(t) \mathcal{H}_P,$$

where the “control parameter” $\lambda(t)$ varies from 0 at $t = 0$ to 1 at $t = T$, the running time, or complexity.

At $t = 0$, just have \mathcal{H}_D. Prepare the system in its ground state. Evolve the system slowly enough that the process is adiabatic.
The **Quantum Adiabatic Algorithm** was proposed by Farhi et al. (2001) as a way of solving general optimization problems on a quantum computer.

Problem Hamiltonian \mathcal{H}_P is a function of the bits, or equivalently the spins $\sigma_i^z = 1 - 2b_i = \pm 1$.

Add a “driver Hamiltonian”, which is simple and does not commute with \mathcal{H}_P. The simplest is a “transverse field” $\mathcal{H}_D = -\hbar \sum_i \sigma_i^x$.

The total Hamiltonian is

$$\mathcal{H} = [1 - \lambda(t)] \mathcal{H}_D + \lambda(t) \mathcal{H}_P,$$

where the “control parameter” $\lambda(t)$ varies from 0 at $t = 0$ to 1 at $t = T$, the running time, or complexity.

At $t = 0$, just have \mathcal{H}_D. Prepare the system in its ground state. Evolve the system slowly enough that the process is adiabatic.

At $t = T$, just have \mathcal{H}_P. If the evolution is adiabatic, the system is in the ground state of \mathcal{H}_P and the problem is solved.
The **Quantum Adiabatic Algorithm** is less demanding on the hardware than algorithms like Shor’s.

The QAA **gradually** evolves the Hamiltonian, which is represented by the connections in the computer, whereas Shor’s algorithm proceeds by a series of **discrete** unitary transformations.

It is easier to avoid interference between the bits and to maintain quantum coherence if changes are made gradually, rather than in a series of discrete jumps.

Here there is **real interest in the quantum computing community** in building a quantum computer which uses the QAA.

Even if one can build one **will it be more efficient than a classical computer** for NP-hard problems?
Complexity of the QAA

How does τ vary with N in order to maintain adiabatic evolution with high probability?
How does T vary with N in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small “minimum gap” between the ground state and the first excited state.

The dashed lines show a crossing that the ground state and first excited would have in the absence of any coupling between them. However, there is actually “level repulsion” so the two levels, shown by the solid lines, do not cross but have a minimum gap ΔE_{min}.
How does T vary with N in order to maintain adiabatic evolution with high probability?

The problem is severe at an “avoided level crossing” with a small “minimum gap” between the ground state and the first excited state. The dashed lines show a crossing that the ground state and first excited would have in the absence of any coupling between them. However, there is actually “level repulsion” so the two levels, shown by the solid lines, do not cross but have a minimum gap ΔE_{min}.

Landau-Zener theory. To stay in ground state, $\text{time } \propto (\Delta E_{\text{min}})^{-2}$.
Quantum Phase Transition

As \(\lambda(t) \) is varied the system is likely to go through a Quantum Phase Transition where the gap will be particularly small.

Hence we are, effectively interested in:

The Size Dependence of the Energy Gap at a Quantum Phase Transition
Early Simulations

So far: just simulations of the QAA on a classical computer.
Early Simulations

So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent Schrödinger equation. Limited to very small sizes, $N \lesssim 20–24$, because the number of basis states 2^N grows exponentially.

The time to get the true ground state with some finite probability found to vary as N^σ with $\sigma \approx 2$.

i.e. Polynomial complexity!
Early Simulations

So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent Schrödinger equation. Limited to very small sizes, $N \lesssim 20–24$, because the number of basis states 2^N grows exponentially.

The time to get the true ground state with some finite probability found to vary as N^σ with $\sigma \simeq 2$.

i.e. Polynomial complexity!

But sizes are very small. Perhaps “crossover” to exponential complexity at larger sizes.
So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent Schrödinger equation. Limited to very small sizes, $N \lesssim 20–24$, because the number of basis states 2^N grows exponentially.

The time to get the true ground state with some finite probability found to vary as N^σ with $\sigma \approx 2$.

i.e. Polynomial complexity!

But sizes are very small. Perhaps “crossover” to exponential complexity at larger sizes.

How can we do larger sizes? Can’t include all 2^N states. Need to do some sort of sampling of the states.
Early Simulations

So far: just simulations of the QAA on a classical computer.

Farhi et al. (2001), Hogg (2003): integrated the time dependent Schrödinger equation. Limited to very small sizes, \(N \lesssim 20–24 \), because the number of basis states \(2^N \) grows exponentially.

The time to get the true ground state with some finite probability found to vary as \(N^\sigma \) with \(\sigma \approx 2 \).

i.e. **Polynomial complexity!**

But sizes are very small. Perhaps “crossover” to exponential complexity at larger sizes.

How can we do larger sizes? Can’t include all \(2^N \) states. Need to do some sort of **sampling** of the states.

\[\implies \text{“Monte Carlo” methods} \]
In *Quantum Monte Carlo* (QMC) simulations, we can only study equilibrium (time-dependent) quantum fluctuations.
In Quantum Monte Carlo (QMC) simulations, we can only study equilibrium (time-dependent) quantum fluctuations. Cannot study the (non-equilibrium) evolution of a time dependent Hamiltonian. However, as we shall see, we can determine the gap ΔE for each λ, and hence determine the minimum gap.
In **Quantum Monte Carlo** (QMC) simulations, we can only study **equilibrium** (time-dependent) quantum fluctuations.

Cannot study the (non-equilibrium) evolution of a time dependent Hamiltonian. However, as we shall see, we can determine the gap ΔE for each λ, and hence determine the **minimum gap**.

QMC depends on the correspondence between the time evolution operator in quantum mechanics $e^{i\mathcal{H}t}$ and the Boltzmann operator in statistical mechanics $e^{-\mathcal{H}\beta}$. We see that β is like **imaginary time**.
Quantum Monte Carlo: I

In **Quantum Monte Carlo** (QMC) simulations, we can only study **equilibrium** (time-dependent) quantum fluctuations. Cannot study the (non-equilibrium) evolution of a time dependent Hamiltonian. However, as we shall see, we can determine the gap ΔE for each λ, and hence determine the minimum gap.

QMC depends on the correspondence between the time evolution operator in quantum mechanics $e^{i\mathcal{H}t}$ and the Boltzmann operator in statistical mechanics $e^{-\mathcal{H} \beta}$. We see that β is like **imaginary time**.

Working through the details, one ends up with copies of the system at different values of imaginary time τ where $0 \leq \tau < \beta$. One discretizes imaginary time (Trotter decomposition) into L_τ “time slices” separated by the time-slice width $\Delta \tau$. We have

$$T^{-1} \equiv \beta = L_\tau / \Delta \tau.$$
In Quantum Monte Carlo (QMC) simulations, we can only study equilibrium (time-dependent) quantum fluctuations.

Cannot study the (non-equilibrium) evolution of a time dependent Hamiltonian. However, as we shall see, we can determine the gap ΔE for each λ, and hence determine the minimum gap.

QMC depends on the correspondence between the time evolution operator in quantum mechanics $e^{i\mathcal{H}t}$ and the Boltzmann operator in statistical mechanics $e^{-\beta \mathcal{H}}$. We see that β is like imaginary time.

Working through the details, one ends up with copies of the system at different values of imaginary time τ where $0 \leq \tau < \beta$. One discretizes imaginary time (Trotter decomposition) into L_{τ} “time slices” separated by the time-slice width $\Delta \tau$. We have

$$T^{-1} \equiv \beta = L_{\tau}/\Delta \tau.$$

The exact quantum mechanical Hamiltonian is reproduced in the limit $\Delta \tau \to 0$. However, we shall argue that this limit is not necessary for our purposes.
Trotter decomposition in QMC.

At each time slice 3 sites are shown. An independent spin $\sigma_i^z(\tau)$ lives at each site and each of the L_τ time slices. If spins i and j have an interaction in \mathcal{H}_P, then, each time slice, these spins interact with a coupling K_{ij}, the same for each slice. Spins on the same site but at neighboring time slices are coupled by an interaction K_τ, again the same for all slices. (Details on next slide.)

The slice at time $\tau = \beta$ is identified with the slice at $\tau = 0$ (i.e. we have periodic boundary conditions in the imaginary time direction).
One simulates an effective Hamiltonian (strictly speaking an action) in space and imaginary time.
Model simulated

One simulates an **effective Hamiltonian** (strictly speaking an action) in space and imaginary time.

This effective Hamiltonian has:
One simulates an **effective Hamiltonian** (strictly speaking an action) in space and imaginary time.

This effective Hamiltonian has:

1. couplings between different spins at the same time slice, arising from the problem Hamiltonian:

\[
\mathcal{H}_P(\{\sigma^z\}) \implies \sum_{m=0}^{L_\tau-1} \mathcal{H}_P(\{\sigma^z_i(\tau_m)\}) \Delta \tau
\]

where \(\tau_m = m \Delta \tau \), and
Model simulated

One simulates an effective Hamiltonian (strictly speaking an action) in space and imaginary time.

This effective Hamiltonian has:

1. couplings between different spins at the same time slice, arising from the problem Hamiltonian:

\[
\mathcal{H}_P(\{\sigma^z\}) \implies \sum_{m=0}^{L-1} \mathcal{H}_P(\{\sigma^z_i(\tau_m)\}) \Delta \tau
\]

where \(\tau_m = m \Delta \tau \), and

2. couplings between different spins at the same site but neighboring time slices arising from the driver Hamiltonian

\[
\mathcal{H}_D = - \sum_i \sigma^x_i \implies - \sum_{m=0}^{L-1} K \sigma^z_i(\tau_m) \sigma^z_i(\tau_{m+1})
\]

where \(e^{-2K} = \tanh(\Delta \tau \hbar) \).
We will assume that T is sufficiently low that the system is in its ground state, i.e. $T \ll \Delta E \equiv E_1 - E_0$.
We will assume that T is sufficiently low that the system is in its ground state, i.e. $T \ll \Delta E \equiv E_1 - E_0$.

In quantum mechanics, correlations between a spin at an initial (real) time t_0 and a later time $t_0 + t$ have the form

$$C(t) \equiv \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i^z(t_0) \sigma_i^z(t_0 + t) \rangle = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_n |\langle 0 | \sigma_i^z | n \rangle|^2 \right] e^{i(E_n - E_0)t}.$$
Time Dependence

We will assume that T is sufficiently low that the system is in its ground state, i.e. $T \ll \Delta E \equiv E_1 - E_0$.

In quantum mechanics, correlations between a spin at an initial (real) time t_0 and a later time $t_0 + t$ have the form

$$C(t) \equiv \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i^z(t_0) \sigma_i^z(t_0 + t) \rangle = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{n} |\langle 0 | \sigma_i^z | n \rangle|^2 \right] e^{i(E_n - E_0)t}.$$

In imaginary time, the complex exponentials are replaced by real, decaying exponentials:

$$C(\tau) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_{n} |\langle 0 | \sigma_i^z | n \rangle|^2 \right] e^{-(E_n - E_0)\tau}.$$
We will assume that T is sufficiently low that the system is in its ground state, i.e. $T \ll \Delta E \equiv E_1 - E_0$.

In quantum mechanics, correlations between a spin at an initial (real) time t_0 and a later time $t_0 + t$ have the form

$$C(t) \equiv \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i^z(t_0) \sigma_i^z(t_0 + t) \rangle = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_n | \langle 0 | \sigma_i^z | n \rangle |^2 \right] e^{i(E_n - E_0) t}.$$

In imaginary time, the complex exponentials are replaced by real, decaying exponentials:

$$C(\tau) = \frac{1}{N} \sum_{i=1}^{N} \left[\sum_n | \langle 0 | \sigma_i^z | n \rangle |^2 e^{-(E_n - E_0) \tau} \right].$$

Hence, at large τ, we have

$$C(\tau) = q + \frac{1}{N} \sum_{i=1}^{N} | \langle 0 | \sigma_i^z | 1 \rangle |^2 e^{-(E_1 - E_0) \tau},$$

where $q = N^{-1} \sum_i \langle \sigma_i^z \rangle^2$. (See next slide for some results.)
Results for the time dependent correlation function against τ for one instance of the Exact Cover problem with $N = 128$ near the location of the minimum gap. Note that the vertical axis is logarithmic. Fitting to the straight line region gives a slope (equal to the gap ΔE) equal to 0.0354.

We took $L_\tau = 300$, $\Delta \tau = 1$, so $T^{-1} \equiv \beta = 300$. Hence the condition $T \ll \Delta E$ is well satisfied.
Exact Cover Problem

We simulated the same problem as Farhi et al., namely Exact Cover.
Exact Cover Problem

We simulated the same problem as Farhi et al., namely **Exact Cover**.

We have N bits and form randomly M triples of bits (known as "clauses"). The energy of a clause is 0 if one bit is 1 and the other two are 0; otherwise the energy is 1. Writing in terms of spin variables, $\sigma^z_i = 1 - 2b_i$, the problem Hamiltonian H_P is given by

$$H_P = \frac{1}{8} \sum_{\alpha=1}^{M} \left(5 - \sigma^z_{\alpha_1} - \sigma^z_{\alpha_2} - \sigma^z_{\alpha_3} + \sigma^z_{\alpha_1} \sigma^z_{\alpha_2} \right. $$

$$\left. + \sigma^z_{\alpha_2} \sigma^z_{\alpha_3} + \sigma^z_{\alpha_3} \sigma^z_{\alpha_1} + 3 \sigma^z_{\alpha_1} \sigma^z_{\alpha_2} \sigma^z_{\alpha_3} \right),$$

(1)

where α_1, α_2 and α_3 are the three spins in clause α.
Exact Cover Problem

We simulated the same problem as Farhi et al., namely Exact Cover.

We have N bits and form randomly M triples of bits (known as “clauses”). The energy of a clause is 0 if one bit is 1 and the other two are 0; otherwise the energy is 1. Writing in terms of spin variables, $\sigma_i^z = 1 - 2b_i$, the problem Hamiltonian \mathcal{H}_P is given by

$$\mathcal{H}_P = \frac{1}{8} \sum_{\alpha=1}^{M} \left(5 - \sigma_{\alpha_1}^z - \sigma_{\alpha_2}^z - \sigma_{\alpha_3}^z + \sigma_{\alpha_1}^z \sigma_{\alpha_2}^z \right. \\
\left. + \sigma_{\alpha_2}^z \sigma_{\alpha_3}^z + \sigma_{\alpha_3}^z \sigma_{\alpha_1}^z + 3 \sigma_{\alpha_1}^z \sigma_{\alpha_2}^z \sigma_{\alpha_3}^z \right), \quad (0)$$

where α_1, α_2 and α_3 are the three spins in clause α.

If there is a “satisfying assignment” the energy is zero. Otherwise the energy is a positive integer.
We simulated the same problem as Farhi et al., namely **Exact Cover**. We have N bits and form randomly M triples of bits (known as "clauses"). The energy of a clause is 0 if one bit is 1 and the other two are 0; otherwise the energy is 1. Writing in terms of spin variables, $\sigma_i^z = 1 - 2b_i$, the problem Hamiltonian \mathcal{H}_P is given by

$$\mathcal{H}_P = \frac{1}{8} \sum_{\alpha=1}^{M} \left(5 - \sigma_{\alpha_1}^z - \sigma_{\alpha_2}^z - \sigma_{\alpha_3}^z + \sigma_{\alpha_1}^z \sigma_{\alpha_2}^z + \sigma_{\alpha_2}^z \sigma_{\alpha_3}^z + \sigma_{\alpha_3}^z \sigma_{\alpha_1}^z + 3 \sigma_{\alpha_1}^z \sigma_{\alpha_2}^z \sigma_{\alpha_3}^z \right),$$

where α_1, α_2 and α_3 are the three spins in clause α.

If there is a "satisfying assignment" the energy is zero. Otherwise the energy is a positive integer.

Following Farhi et al. we take instances with a "**Unique Satisfying Assignment**" (USA). To find these with reasonable probability, we adjust the ratio M/N for each size N.
Results for the gap to the first excited state ΔE as a function of the control parameter λ for one instance with $N = 64$. The gap has is finite for $\lambda = 0$ (this is due to the driver Hamiltonian, $\sum_i \sigma_i^x$). It is also finite for $\lambda = 1$ because we chose instances with this property (Unique Satisfying Assignment). There is a minimum of the gap at an intermediate value of λ, presumably close to a quantum phase transition.

We compute ΔE_{min} for many (50) instances for several different sizes, $N = 16, 32, 64, 128$.
We take the median value of the minimum gap among different instances for a given size N to be a measure of the “typical” minimum gap.
We take the \textbf{median} value of the minimum gap among different instances for a given size N to be a measure of the "typical" minimum gap.

A log-log plot of the median of the minimum gap as a function of the number of bits N up to $N = 128$. From the satisfactory straight line fit, it is seen that the median ΔE_{min} decreases as a power law,

$$\text{median } \Delta E_{\text{min}} \propto N^{-\mu},$$

for these sizes, with

$$\mu = 0.73 \pm 0.06.$$

The inset shows a log-linear plot. The pronounced curvature shows that the behavior is \textit{not exponential} for this range of sizes.

Expect \textbf{complexity} $\propto N^{2\mu}$ (if matrix element effects are small).
Note: The discretization of imaginary time does not affect the way the complexity varies with N, though it does affect the precise value of the energy gap for given N and λ. Once the relaxation time $(\Delta E)^{-1}$ is much larger than the “lattice spacing” $\Delta \tau$ the lattice discretization is unimportant. Hence, whether the minimum gap varies exponentially with N or as a power law will not depend on the value of $\Delta \tau$.
Note: The discretization of imaginary time does not affect the way the complexity varies with N, though it does affect the precise value of the energy gap for given N and λ. Once the relaxation time $(\Delta E)^{-1}$ is much larger than the “lattice spacing” $\Delta \tau$ the lattice discretization is unimportant. Hence, whether the minimum gap varies exponentially with N or as a power law will not depend on the value of $\Delta \tau$.

In the theory of continuous phase transitions this concept of “universality” is well established. Universality means that some (universal) quantities like “critical exponents” don’t depend on microscopic details such as the lattice structure. Other (non-universal) quantities, such as the location of the critical point, do depend on details.
Note: The discretization of imaginary time does not affect the way the complexity varies with \(N \), though it does affect the precise value of the energy gap for given \(N \) and \(\lambda \). Once the relaxation time \((\Delta E)^{-1} \) is much larger than the “lattice spacing” \(\Delta \tau \) the lattice discretization is unimportant. Hence, whether the minimum gap varies exponentially with \(N \) or as a power law will not depend on the value of \(\Delta \tau \).

In the theory of continuous phase transitions this concept of “universality” is well established. Universality means that some (universal) quantities like “critical exponents” don’t depend on microscopic details such as the lattice structure. Other (non-universal) quantities, such as the location of the critical point, do depend on details.

Example: Exact solution of the Ising model in two dimensions. The magnetization tends to zero as \(T \to T_c^- \), like \((T_c - T)^{\beta} \). With a lot of work, this can be calculated on different lattices, e.g. square and triangular. The value of \(T_c \) depends on the lattice (it is “non-universal”) but \(\beta = 1/8 \), the same for all lattice structures, i.e. it is “universal”.
Note: The discretization of imaginary time does not affect the way the complexity varies with \(N \), though it does affect the precise value of the energy gap for given \(N \) and \(\lambda \). Once the relaxation time \((\Delta E)^{-1} \) is much larger than the “lattice spacing” \(\Delta \tau \) the lattice discretization is unimportant. Hence, whether the minimum gap varies exponentially with \(N \) or as a power law will not depend on the value of \(\Delta \tau \).

In the theory of continuous phase transitions this concept of “universality” is well established. Universality means that some (universal) quantities like “critical exponents” don’t depend on microscopic details such as the lattice structure. Other (non-universal) quantities, such as the location of the critical point, do depend on details.

Example: Exact solution of the Ising model in two dimensions. The magnetization tends to zero as \(T \to T_c^- \), like \((T_c - T)^\beta \). With a lot of work, this can be calculated on different lattices, e.g. square and triangular. The value of \(T_c \) depends on the lattice (it is “non-universal”) but \(\beta = 1/8 \), the same for all lattice structures, i.e. it is “universal”.

Note: One can simulate the \(\Delta \tau \to 0 \) limit, but this is more complicated.
A commonly used classical algorithm for satisfiability problems is the Davis Putnum algorithm. This is guaranteed to correctly say whether or not there is a satisfying assignment. The figure shows the complexity for the instances used in the QMC simulations. It is clearly exponential for the range of sizes studied.
A classical algorithm which is more analogous to QAA is WALKSAT, a local heuristic search algorithm. Like simulated annealing, it includes “up-hill” moves in a stochastic way. Using the default value of the “noise parameter" the complexity for the QAA instances with USA crosses over from power-law to (presumably) exponential for \(N \gtrsim 100 \). (But note the QMC is so far only for \(N \leq 128 \).)
Adjusting the noise parameter, the crossover to exponential behavior is pushed to larger sizes $N \gtrsim 200$. (Remember: the QMC is so far only for $N \leq 128$).
Conclusions

- Using Quantum Monte Carlo simulations (QMC) we have been able to study the complexity of the Quantum Adiabative Algorithm (QAA) for the Exact Cover problem with a Unique Satsifying Assignment (USA) for much larger sizes (up to 128) than in earlier work (20–24).
Conclusions

- Using Quantum Monte Carlo simulations (QMC) we have been able to study the complexity of the Quantum Adiabative Algorithm (QAA) for the Exact Cover problem with a Unique Satisfying Assignment (USA) for much larger sizes (up to 128) than in earlier work (20–24).
- The complexity remains polynomial up to this size.
Conclusions

- Using Quantum Monte Carlo simulations (QMC) we have been able to study the complexity of the Quantum Adiabative Algorithm (QAA) for the Exact Cover problem with a Unique Satisfying Assignment (USA) for much larger sizes (up to 128) than in earlier work (20–24).
- The complexity remains polynomial up to this size.
- It remains to be shown whether QAA is more efficient for satisfiability problems than classical algorithms such as WALKSAT.
Conclusions

- Using Quantum Monte Carlo simulations (QMC) we have been able to study the complexity of the Quantum Adiabative Algorithm (QAA) for the Exact Cover problem with a Unique Satisfying Assignment (USA) for much larger sizes (up to 128) than in earlier work (20–24).
- The complexity remains polynomial up to this size.
- It remains to be shown whether QAA is more efficient for satisfiability problems than classical algorithms such as WALKSAT.

Thank you