Physics 115/242

Approach to the central limit theorem.

Peter Young
(Dated: April 21, 2013)

Consider a random variable x with distribution $P(x)$. This has mean μ and standard deviation σ. According to the central limit theorem, if μ and σ are finite, the distribution of the sum of N independent such variables,

$$Y = \sum_{i=1}^{N} x_i,$$

is, for $N \to \infty$, a Gaussian with mean $N\mu$ and standard deviation $\sqrt{N}\sigma$. It is convenient to subtract off the mean, and divide by $\sqrt{N}\sigma$, i.e. let

$$X = \frac{Y - N\mu}{\sqrt{N}\sigma} = \frac{1}{\sqrt{N}\sigma} \sum_{i=1}^{N} (x_i - \mu)$$

(1)

because the central limit theorem then predicts that the distribution of X, which we call $P^{(N)}(X)$, becomes independent of N for large N, namely a Gaussian with zero mean and standard deviation unity:

$$\lim_{N \to \infty} P^{(N)}(X) = \frac{1}{\sqrt{2\pi}} e^{-X^2/2}.$$

(2)

Clearly $P^{(1)}(X) \equiv P(X)$, the distribution of the individual variables. We emphasize that even though the distribution of the individual variables, $P(x)$, is, in general, not a Gaussian, the distribution $P^{(N)}(X)$ will become Gaussian for large N (assuming the conditions of the central limit theorem hold; i.e. the mean μ and standard deviation σ of $P(x)$ are finite).

We illustrate the convergence to the central limit theorem as N is increased, by taking, for $P(x)$, the rectangular distribution

$$P(x) = \begin{cases}
\frac{1}{2\sqrt{3}}, & (|x| < \sqrt{3}), \\
0, & (|x| > \sqrt{3}).
\end{cases}$$

(3)

This is shown by the dotted line in Fig. 1, and is clearly quite different from a Gaussian, which is represented by the solid line. It is easy to see that

$$\mu \equiv \langle x \rangle = 0,$$

(4)
FIG. 1: The dotted line is the rectangular distribution, $P(X) \equiv P^{(1)}(X)$, in Eq. (3). The solid line is the Gaussian distribution in Eq. (2). The short-dashed and long-dashed lines are the distributions, $P^{(N)}(X)$, of the sum (divided by \sqrt{N}, see Eq. (1)) of $N = 2$ and 4 variables, each distributed according to the rectangular distribution.

and a simple calculation gives

$$\sigma \equiv \left(\langle x^2 \rangle - \langle x \rangle^2\right)^{1/2} = 1.$$ \hspace{1cm} (5)

The distributions for $N = 2$ and 4 are shown by the short-dashed, and long-dashed lines in the figure. For $N = 2$, the distribution is a “tent” distribution (consisting of two straight lines; this can
be shown analytically). It resembles a Gaussian more than the original rectangular distribution, but is not very close to it. However, we see that even for N as small as 4, the distribution $P^{(N)}(X)$ is quite close to a Gaussian. For significantly larger values of N, the curves for $P^{(N)}(X)$ would be indistinguishable, in the figure, from the Gaussian curve.

Two points of caution need to be made, though.

1. For large N, the distribution becomes Gaussian in the central region around the mean. However, if one looks far out in the “tails” of the distribution (where its numerical value is very small) there are large deviations from Gaussian, in general. This is not usually important for data analysis, but in statistical physics we often do need the form of a distribution in the tails, and in these cases it is important to realize that it is not Gaussian.

2. The Gaussian distribution falls off rapidly at values more than one or two σ from the mean. In the numerical example taken above, I started with a distribution with a “sharp” cutoff, as a result of which the distribution converges rapidly to a Gaussian. However, if I had started with a distribution with a long tail, e.g. one that varies like $|x|^{-\lambda}$ for large $|x|$ (we need $\lambda > 3$ for the second moment to be finite), one needs a very large value of N to suppress these long tails and end up with a distribution for the sum which is approximately Gaussian.